Abstract

The leaves of most higher plants are polar along their adaxial-abaxial axis, and the development of the adaxial domain (upper side) and the abaxial domain (lower side) makes the leaf a highly efficient photosynthetic organ. It has been proposed that a hypothetical signal transported from the shoot apical meristem (SAM) to the incipient leaf primordium, or conversely, the plant hormone auxin transported from the leaf primordium to the SAM, initiates leaf adaxial-abaxial patterning. This hypothetical signal has been referred to as the Sussex signal, because the research of Ian Sussex published in 1951 was the first to imply its existence. Recent results, however, have shown that auxin polar transport flanking the incipient leaf primordium, but not the Sussex signal, is the key to initiate leaf polarity. Here, we review the new findings and integrate them with other recently published results in the field of leaf development, mainly focusing on the early steps of leaf polarity establishment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.