Abstract
The final biological effect of auxin depends both on free auxin levels and on auxin perception capacity.RolB transformedBeta vulgaris L. hairy roots provide a system for studying both factors. Highly purified plasma membrane fractions were prepared with aqueous two-phase partitioning. Individual hairy root clones were assessed for the binding activities of plasma membrane-bound auxin binding proteins and for their free intracellular indole-3-acetic acid levels. The presence of a high affinity auxin binding protein with a dissociation constant of 9.07 x 10-7 M was detected in the plasma membrane fractions isolated from non-transformed seedling roots and the six clones ofrolB transformed hairy roots. However, the levels of specific IAA binding considerably varied among different hairy root clones and between transformed and non-transformed roots. The levels of the detectable polypeptide in immunoblotting with an antibody against maize 22-kD auxin binding protein subunit were in good agreement to the levels that were detected in auxin binding assays. Differences in the indole-3-acetic acid levels were found between transformed and non-transformed roots and also between different transformed hairy root clones. A negative correlation was observed between free intracellular IAA levels and its specific binding to the plasma membrane-bound auxin binding proteins. A latency study indicated that the binding site for auxin may be located on the exterior face of the plasma membrane
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.