Abstract

The plant hormone auxin is a vital component for plant reproduction as it regulates the development of both male and female reproductive organs, including ovules and gynoecia. Furthermore, auxin plays important roles in the development and growth of seeds and fruits. Auxin responses can be detected in ovules shortly after fertilization, and it has been suggested that this accumulation is a prerequisite for the developmental reprogramming of the ovules to seeds, and of the gynoecium to a fruit. However, the roles of auxin at the final stages of ovule development, and the sources of auxin leading to the observed responses in ovules after fertilization have remained elusive. Here we have characterized the auxin readout in Arabidopsis ovules, at the pre-anthesis, anthesis and in the immediate post-fertilization stages, using the R2D2 auxin sensor. In addition we have mapped the expression of auxin biosynthesis and conjugation genes, as well as that of auxin transporting proteins, during the same developmental stages. These analyses reveal specific spatiotemporal patterns of the different auxin homeostasis regulators. Auxin biosynthesis genes and auxin transport proteins define a pre-patterning of vascular cell identity in the pre-anthesis funiculus. Furthermore, our data suggests that auxin efflux from the ovule is restricted in an anther-dependent manner, presumably to synchronize reproductive organ development and thereby optimizing the chances of successful fertilization. Finally, de novo auxin biosynthesis together with reduced auxin conjugation and transport result in an enhanced auxin readout throughout the sporophytic tissues of the ovules soon after fertilization. Together, our results suggest a sophisticated set of regulatory cascades that allow successful fertilization and the subsequent transition of the female reproductive structures into seeds and fruits.

Highlights

  • Developmental switches that terminate one developmental program in favor of the onset of another, are key processes during the differentiation of a complex multicellular organism

  • The importance of auxin biosynthesis for the observed DII depletion sites in FG5 stage ovules was assessed by analyzing the expression of the YUCCA (YUC) genes

  • In FG5 stage ovules, two of the auxin biosynthesis reporters, YUC1pro:n3xGFP and YUC6pro:eGFP-GUS, are active in central tissues of the funiculus (Figures 1C,C,D,D ), suggesting that YUC1 and YUC6 may contribute to the auxin readout detected by the R2D2 sensor system in these tissues

Read more

Summary

Introduction

Developmental switches that terminate one developmental program in favor of the onset of another, are key processes during the differentiation of a complex multicellular organism. These switches are of particular importance in sessile plants, as they allow the plants to adapt their life strategies to changes in their environment (Huijser and Schmid, 2011). Auxin Homeostasis in Arabidopsis Ovules that is often neglected is the developmental arrest of the mature female reproductive structures, including the ovules and the gynoecium, before anthesis and pollination, and its subsequent release by fertilization, which triggers the onset of embryo, seed and fruit development, respectively. The developmental switch at anthesis is vital for different breeding and reproductive strategies and for the survival of a plant species

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call