Abstract

BackgroundAuxin plays a crucial role in nitrate (NO3–)-mediated root architecture, and it is still unclear that if NO3– supply modulates auxin reallocation for regulating root formation in maize (Zea mays L.). This study was conducted to investigate the role of auxin efflux carrier ZmPIN1a in the root formation in response to NO3– supply.ResultsLow NO3– (LN) promoted primary root (PR) elongation, while repressed the development of lateral root primordia (LRP) and total root length. LN modulated auxin levels and polar transport and regulated the expression of auxin-responsive and -signaling genes in roots. Moreover, LN up-regulated the expression level of ZmPIN1a, and overexpression of ZmPIN1a enhanced IAA efflux and accumulation in PR tip, while repressed IAA accumulation in LRP initiation zone, which consequently induced LN-mediated PR elongation and LR inhibition. The inhibition rate of PR length, LRP density and number of ZmPIN1a-OE plants was higher than that of wild-type plants after auxin transport inhibitor NPA treatment under NN and LN conditions, and the degree of inhibition of root growth in ZmPIN1a-OE plants was more obvious under LN condition.ConclusionThese findings suggest that ZmPIN1a was involved in modulating auxin levels and transport to alter NO3–-mediated root formation in maize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call