Abstract

lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call