Abstract

The auxiliary field diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon–nucleon interactions, which include tensor, spin–orbit and three-body forces, plus a standard one-body confining potential, have been compared with analogous calculations obtained with Green's function Monte Carlo methods. We have studied the dependence of the binding energy, the one-body density and the spin–orbit splittings of 7n on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin–orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the auxiliary field diffusion Monte Carlo method seems to be one of the best candidate to perform ab initio calculations on neutron rich nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.