Abstract
We rewrite the Lagrangian for a dilute Bose gas in terms of auxiliary fields related to the normal and anomalous condensate densities. We derive the loop expansion of the effective action in the composite-field propagators. The lowest-order auxiliary field (LOAF) theory is a conserving mean-field approximation consistent with the Goldstone theorem without some of the difficulties plaguing approximations such as the Hartree and Popov approximations. LOAF predicts a second-order phase transition. We give a set of Feynman rules for improving results to any order in the loop expansion in terms of composite-field propagators. We compare results of the LOAF approximation with those derived using the Popov approximation. LOAF allows us to explore the critical regime for all values of the coupling constant, and we determine various parameters in the unitarity limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.