Abstract

e13154 Background: Many people harbor pulmonary nodules. Such nodules can be detected by low-dose computed tomography (LDCT) during regular physical examinations. If a pulmonary nodule is small (i.e. < 10mm), it is very difficult to diagnose whether it is benign or malignant using CT images alone. To address this problem, we developed a method based on liquid biopsy and deep learning to improve diagnostic accuracy of pulmonary nodules. Methods: Thirty-eight patientsharboring one or more small pulmonary nodules were enrolled in this study. Twenty-nine patients were diagnosed as having cancer (stage I = 21, stage II = 1, stage III = 3, stage IV = 4) using tissue biopsy, while the other 9 patients were diagnosed as having benign tumors or lung diseases other than cancer. For each patient, a blood sample was obtained prior to biopsy, and the cell free DNA (cfDNA) was sequenced using a 451-gene panel to a depth of 20,000×. The unique molecular identifiers (UMI) technique was applied to reduce false positives. Seventeen patients also had full-resolution CT images available. A deep learning system primarily based on deep convolutional neural networks (CNN) was used to analyze these CT images. Results: Sequence analysis of blood samples revealed that 75.8% (22/29) of cancer patients had detectable cancer related mutations, and only 1 of 9 (11.1%) non-cancer patient was found to carry a TP53 mutation. The most frequent mutations seen in cancer patients involved genes TP53 (N = 11), EGFR (N = 7), and KRAS (N = 3) with mutant allele fractions varying from 0.08% to 74.77%. Deep learning analysis of the 17 available CT images correctly identified cancers in 88.2% (15/17) of patients. However, by combining the liquid biopsy and image analysis results, all 17 patients were correctly diagnosed. Conclusions: Deep learning-based analysis of CT images can be applied to early diagnosis of lung cancers; but the accuracy of image analysis, when used alone, is only moderate. Diagnostic accuracy can be greatly improved using liquid biopsy as an auxiliary method in patients with pulmonary nodules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call