Abstract

A scheme is proposed to achieve significantly enhanced quantum estimation of optorotational-coupling (ORC) strength by coupling a driven auxiliary cavity to a Laguerre-Gaussian (L-G) rotational cavity, where the ORC originates from the exchange of orbital angular momentum between a L-G light and rotational mirror. The results indicate that, by appropriately designing the auxiliary-cavity mechanism, the estimation error of the ORC parameter is significantly reduced, and revealing the estimation precision has a much stronger thermal noise and dissipation robustness in comparison with the unassisted case. Our study paves the way toward achieving high-precision quantum sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call