Abstract

A very low-frequency mode supported within an auxetic structure is presented. We propose a constrained periodic framework with corner-to-corner and edge-to-edge sharing of tetrahedra and develop a kinematic model incorporating two types of linear springs to calculate the momentum term under infinitesimal transformations. The modal analysis shows that the microstructure with its two degrees of freedom has both low- and high-frequency modes under auxetic transformations. The low-frequency mode approaches zero frequency when the corresponding spring constant tends to zero. With regard to coupled eigenmodes, the stress–strain relationship of the uniaxial forced vibration covers a wide range. When excited, a very slow motion is clearly observed along with a structural expansion for almost zero values of the linear elastic modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.