Abstract
Recently synthesized atomically thin boron sheets (that is, borophene) provide a fascinating template for new material property discovery. Here, we report findings of an extraordinary combination of unusual mechanical and electronic properties in hydrogenated borophene, known as borophane, from first-principles calculations. This novel 2D material has been shown to exhibit robust Dirac transport physics. Our study unveils that borophane is auxetic with a surprising negative Poisson's ratio stemming from its unique puckered triangle hinge structure and the associated hinge dihedral angle variation under a tensile strain in the armchair direction. Our results also identify borophane to be ferroelastic with a stress-driven 90° lattice rotation in the boron layer, accompanied by a remarkable orientation switch of the anisotropic Dirac transport channels. These outstanding strain-engineered properties make borophane a highly versatile and promising 2D material for innovative applications in microelectromechanical and nanoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.