Abstract

Autonomous underwater vehicle (AUV), as a new underwater operation platform, has been widely used in the field of ocean engineering. AUV underwater condition monitoring is an important guarantee for the safety and effective execution of AUV operations. To meet the requirement of real-time and high-precision underwater instantaneous velocity monitoring of AUV, this paper proposed an AUV instantaneous velocity estimation method. The method takes the target azimuth and Doppler shift as the observation information. It comprehensively uses the geometric relationship among the target azimuth, heading angle, radial velocity angle, and the physical relationship between Doppler and radial velocity to construct an AUV instantaneous velocity estimation model based on distributed dual acoustic observation nodes. We derive the analytical solution of AUV speed and heading angle and analyze the influence of each observation error on the estimation precision of the algorithm. The research and practical data processing results show that the proposed method can effectively estimate the instantaneous velocity of AUV. Compared with the traditional method based on position difference, it has the advantages of high estimation precision, is not limited by frame interval, and is adaptive to many kinds of motion modes. When AUV moves in a straight line at a uniform speed, the precision of speed estimation and heading angle estimation of the algorithm proposed in the paper is 0.506 m/s and 6.146°, which is equivalent to that of the traditional method based on position difference with 50 frame intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call