Abstract

Autumnal changes in organic-S, sulfate-S, total-S and the ratios of organic-S to total-N and sulfate-S to organic-S were followed in leaves and adjacent bark of actinorhizal (Frankia-nodulated) black alder (Alnus glutinosa (L.) Gaertn.) and eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees growing on a minespoil site high in extractable soil sulfate, and in black alder and white basswood (Tilia heterophylla Venten.) trees growing on a prairie-derived soil in Illinois. Organic-S concentrations decreased significantly (P < 0.05) during autumn only in foliage of trees growing on the prairie-derived soil where losses of leaf organic-S were 65% for black alder and 100% for white basswood. Leaf sulfate concentrations were relatively stable throughout autumn in white basswood growing on prairie-derived soil and in black alder at both sites. Sulfate-S concentrations in leaves were significantly (P < 0.05) higher in trees at the minespoil site than in trees growing in the prairie-derived soil (5.1 mg g(-1) for the minespoil site and 1.2 mg g(-1) for the prairie-derived soil), and in the non-actinorhizal species during late summer. During the autumn, the ratio of organic-S to total-N doubled in leaves of eastern cottonwood at the minespoil site, but in black alder and white basswood growing on the prarie-derived soil, it decreased by 60 and 74%, respectively. Organic-S concentrations in bark increased more during autumn in species unable to fix atmospheric N(2), than in black alder. The results suggest that patterns of autumnal translocation of leaf S can be site-dependent and that leaf S and leaf N are, at least in part, translocated independently in the fall. Black alder and eastern cottonwood seemed to incorporate sulfate-S readily into organic substances in leaves when grown in soils with a high sulfate content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call