Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by abnormal social behavior and communication. The autism susceptibility candidate 2 (AUTS2) gene has been associated with multiple neurological diseases, including ASD. Glucose metabolism plays an important role in social behaviors associated with ASD, but the potential role of AUTS2 in glucose metabolism has not been studied. Here, we generated Auts2flox/flox; Emx1Cre+ conditional knockout mice with Auts2 deletion specifically in Exm1-positive neurons in the brain (Auts2-cKO mice) to evaluate the effects of Auts2 knockdown on social behaviors and metabolic pathways. Auts2-cKO mice exhibited ASD-like behaviors, including impaired social interactions and repetitive grooming behaviors. At the molecular level, we found that Auts2 knockdown reduced brain glucose uptake and inhibited the pentose phosphate pathway. Auts2 knockdown also resulted in signs of oxidative stress, and we documented increased levels of reactive oxygen species and malondialdehyde as well as decreased levels of antioxidant molecules, including glutathione and superoxide dismutases in Auts2-cKO mouse brains compared to controls. Finally, Auts2 knockdown significantly disrupted mitochondrial homeostasis and inhibited activity of the SIRT1-SIRT3 axis. Taken together, our findings indicate that loss of AUTS2 expression in Emx1-expressing cells induces multiple changes in metabolic pathways that have been linked to the pathology of ASD. Further characterization of the role of AUTS2 in Emx1-expressing cells in regulating the metabolism of brain neurons may identify opportunities to treat ASD and AUTS2-deficiency disorders with metabolism-targeted therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call