Abstract
In a permissioned blockchain, performance dictates its development, which is substantially influenced by its parameters. However, research on auto-tuning for better performance has somewhat stagnated because of the difficulty posed by distributed parameters; thus, it is possible only with difficulty to propose an effective auto-tuning optimization scheme. To alleviate this issue, we lay a solid basis for our research by first exploring the relationship between parameters and performance in Hyperledger Fabric, a permissioned blockchain, and we propose Athena, a Fabric-based auto-tuning system that can automatically provide parameter configurations for optimal performance. The key of Athena is designing a new Permissioned Blockchain Multi-Agent Deep Deterministic Policy Gradient (PB-MADDPG) to realize heterogeneous parameter-tuning optimization of different types of nodes in Fabric. Moreover, we select parameters with the most significant impact on accelerating recommendation. In its application to Fabric, a typical permissioned blockchain system, with 12 peers and 7 orderers, Athena achieves a throughput improvement of 470.45% and a latency reduction of 75.66% over the default configuration. Compared with the most advanced tuning schemes (CDBTune, Qtune, and ResTune), our method is competitive in terms of throughput and latency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.