Abstract

A novel synthesis of morphology-controlled perovskite networked with LaCr0.8Ru0.2O3 nanoparticles was introduced using activated carbons as sacrificial templates. These catalysts were used for the hydrogen production by heavy-hydrocarbon autothermal reforming. To investigate the effect of the carbon templates, morphology-controlled perovskites using activated carbons and a non-templated catalyst were prepared to determine how carbon templates influence the chemical structure of the perovskite. The carbon templates produced a crystalline structure with the well incorporation of Ru under mild calcination conditions. The morphology of the hollow fibers provided a higher specific surface area than that of the porous grain catalyst with a similar average particle size (∼80nm). It was found that the hollow fibers showed a unique pore structure with large macropores from 1 to 100μm, which might offer a higher surface area and enhanced mass transfer of the reactants. This provided a higher activation energy for H2 production than the porous grain and non-templated catalysts during the autothermal reforming of heavy hydrocarbons. As a result, the fibrous feature and well-defined chemical structure were crucial factors when cracking the hydrocarbon chain. The hollow fiber catalyst showed high reforming efficiency for H2 production (>65mol%) from heavy-hydrocarbon fuels during long-term experiments, featuring substantial durability with low carbon deposition and no structural changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call