Abstract

Hydrogen production from ethanol by autothermal reforming over an Rh/CeO 2 catalyst was investigated with a stoichiometric feed composition. Ethanol as well as the reaction intermediates like acetaldehyde and acetone was entirely converted to hydrogen and C1 products at 673 K, and methane steam reforming and reverse water gas shift were the major reactions above 823 K. The Rh/CeO 2 catalyst exhibited stable activity and selectivity during 70 h on-stream operation at 823–923 K without obvious deactivation evidenced by the constant effluent gas composition. Structural analysis of the used catalyst revealed that CeO 2 prevented effectively the highly dispersed Rh particles with sizes of 1–3 nm from sintering and thus maintained sufficient Rh–CeO 2 interfacial areas, which facilitated coke gasification through the high oxygen storage-release capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.