Abstract

Pyrolysis plays a major role in the optimization of process efficiency and gas quality in two-stage gasifiers. We developed an original reactor at pilot scale to investigate continuous fixed bed pyrolysis, in either allothermal or autothermal operating mode using air injection. Instrumentation and analysis enabled thermal profiles to be established inside the bed along with fine measurement of yields, char composition, permanent gases, and compounds at the outlet of the pyrolysis reactor. Under oxidative conditions, fixed-bed pyrolysis led to smoldering and the stabilization of an ignition front between 10 and 20cm below the bed surface. With oxidative pyrolysis, yields of organic condensates were lower than with allothermal pyrolysis, whereas the production of pyrolysis water and permanent gases increased considerably. The main conclusion is that during autothermal pyrolysis in fixed-bed conditions, the presence of oxygen promotes oxidation of volatile matter and cracking reactions, thereby increasing the production of pyrolysis water and permanent gases. We observed a significant increase in yields of CO2 and CO, while the yield of char remained comparable to that in allothermal experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.