Abstract

Autotaxin, a lysophospholipase D producing lysophosphatidic acid, augments invasive and metastatic potential of tumor cells. Current investigations have focused on understanding the molecular mechanisms by which autotaxin regulates the expression of a major mediator of tumor invasion and metastasis, urokinase-type plasminogen activator (uPA) in human A2058 melanoma cells. Autotaxin induced uPA expression in a dose-dependent manner that was inhibited by pharmacological inhibitors for Gi (pertussis toxin), phosphoinositide 3-kinase (PI3K, LY294002), Akt inhibitor (AktI), proteosome activity and IkappaB phosphorylation (pyrrolidine dithiocarbamate), and by a dominant negative mutant (DN) of Akt. Autotaxin phosphorylated Akt and induced the translocation of nuclear [corrected] factor-kappaB (NF-kappaB) to the nucleus that were inhibited by AktI or by overexpressing DN-Akt. Consistently, green fluorescence protein-tagged p65 of NF-kappaB accumulated in the nucleus by autotaxin that was abrogated when the cells were transfected with DN-Akt. Moreover, autotaxin increased the DNA binding ability of NF-kappaB and promoter activity of uPA. Collectively, these data strongly suggest autotaxin induces uPA expression via the Gi-PI3K-Akt-NF-kappaB signaling pathway that might be critical for autotaxin-induced tumor cell invasion and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.