Abstract

T cells exhibit high-speed migration within the paracortical T zone of lymph nodes (LNs) as they scan cognate Ags displayed by dendritic cells in the tissue microenvironment supported by the network of stromal cells. Although intranodal T cell migration is controlled in part by chemokines and LFA-1/ICAM-1, the mechanisms underlying their migratory activity independent of these factors remain to be elucidated. In this study, we show that LN stromal cells constitutively express autotaxin (ATX), an ectoenzyme that is important for the generation of lysophosphatidic acid (LPA). Importantly, CCL21(+) stromal cells in the T zone produced and immobilized ATX on their cell surface. Two-photon imaging using LN tissue slices revealed that pharmacological inhibition of ATX or LPA receptors significantly reduced T cell migration, and this was further exacerbated by blockage of Gαi signaling or LFA-1. Therefore, T cell motility mediated by the ATX-LPA axis was independent of Gαi and LFA-1. LPA induced slow intermittent movement of T cells in vitro in a LFA-1-independent manner and enhanced CCL21-induced migration. Moreover, LPA and CCL21 cooperatively augmented RhoA activity in T cells, which was necessary for efficient intranodal T cell migration via the downstream ROCK-myosin II pathway. Taken together, T zone stromal cells control optimal migratory behavior of T cells via multiple signaling cues mediated by chemokines and ATX/LPA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.