Abstract

In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.