Abstract
We study Boolean algebras with distinguished ideals (I-algebras). We proved that a local I-algebra is autostable relative to strong constructivizations if and only if it is a direct product of finitely many prime models. We describe complete formulas of elementary theories of local Boolean algebras with distinguished ideals and a finite tuple of distinguished constants. We show that countably categorical I-algebras, finitely axiomatizable I-algebras, superatomic Boolean algebras with one distinguished ideal, and Boolean algebras are autostable relative to strong constructivizations if and only if they are products of finitely many prime models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.