Abstract

BackgroundRisk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records.ObjectiveThis study aims to propose AutoScore, a machine learning–based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications.MethodsWe proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore.ResultsImplemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules.ConclusionsWe developed an easy-to-use, machine learning–based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.

Highlights

  • Risk-scoring models are sparse models with integer point scores, which are used pervasively throughout medicine for risk stratification [1]

  • Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility

  • The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780, whereas the model of logistic regression with 24 variables had an AUC of 0.778

Read more

Summary

Introduction

Risk-scoring models are sparse models with integer point scores, which are used pervasively throughout medicine for risk stratification [1]. Risk-scoring models have been traditionally developed in 1 of 2 ways: through expert opinions or consensus, such as the Sepsis-related Organ Failure Assessment [5] score and the National Early Warning Score [6], and through the analysis of conventional cohort studies, such as the History, Electrocardiogram, Age, Risk factors, and Troponin score [7] and the Charlson Comorbidity Index [8] Both approaches are labor-intensive and are not easy to update over time, which reveals the need for a flexible and fast approach to deriving risk-scoring models. There is an unmet need to develop a parsimonious model with easy access to validation in the context of EHRs. Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. The development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call