Abstract

Pax6, a multifunctional protein and a transcriptional regulator is critical for optimal functioning of neuronal cells. It is known that alternatively spliced Pax6 isoforms and co-expressed interacting proteins mediate cell/tissue specific autoregulation of Pax6, however, underlying mechanism(s) are poorly understood. We used Neuro-2a cells to explore the mechanism of autoregulation of Pax6 in neuronal cells whereas NIH/3T3 cells were used as control. We first studied the transcript expression of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD); and the two co-expressed Pax6-interacting partners: SPARC and p53 in normal and overexpressed conditions, through the semi-quantitative RT-PCR. Further, we used the luciferase reporter assay to study the binding and transactivation of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD) to their respective promoters: P0, P1, and Pα; followed by that of the two co-expressed Pax6-interacting partners: SPARC and p53 to the Pax6-P1 promoter. Expression and distribution of Pax6, Pax6(5a) and Pax6(ΔPD), their binding to Pax6-promoters (P0, P1, and Pα) and transactivation were modulated in transfected Neuro-2a cells. Our results suggest that autoregulation of Pax6 in neuronal cells is driven by a promoter dependent mechanism which is mediated by spliced variants [Pax6(5a) and Pax6(ΔPD)] and interacting proteins (SPARC and p53) of Pax6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call