Abstract
Autoregressive (AR) models are commonly obtained from the linear autocorrelation of a discrete-time signal to obtain an all-pole estimate of the signal's power spectrum. We are concerned with the dual, frequency-domain problem. We derive the relationship between the discrete-frequency linear autocorrelation of a spectrum and the temporal envelope of a signal. In particular, we focus on the real spectrum obtained by a type-I odd-length discrete cosine transform (DCT-Io) which leads to the all-pole envelope of the corresponding symmetric squared Hilbert temporal envelope. A compact linear algebra notation for the familiar concepts of AR modeling clearly reveals the dual symmetries between modeling in time and frequency domains. By using AR models in both domains in cascade, we can jointly estimate the temporal and spectral envelopes of a signal. We model the temporal envelope of the residual of regular AR modeling to efficiently capture signal structure in the most appropriate domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.