Abstract
Fast synaptic transmission in sympathetic ganglia is mediated by acetylcholine, acting on nicotinic receptors, yet muscarinic receptors are also present and are involved in the production of slow postsynaptic potentials. In order further to elucidate the role of muscarinic receptors in ganglionic transmission their distribution in the rat superior cervical sympathetic ganglion was investigated autoradiographically by use of the tritiated irreversible muscarinic ligand propylbenzilylcholine mustard. It was observed that this agent blocked the carbachol-evoked hydrolysis of inositol phospholipids in the ganglion and that this response to carbachol is itself inhibitable by selective muscarinic antagonists with a potency sequence which indicates involvement primarily of M1 receptors. Light microscope autoradiography showed that labelling inhibitable by atropine and by the M1-selective muscarinic antagonist pirenzepine was essentially confined to the margins of neuronal somata and regions of dendritic arborization, which include synaptic contacts. Quantitative electron microscope autoradiography showed that binding of the radioligand, of which approximately 70% was inhibitable by atropine and 68% by pirenzepine, was associated predominantly with surface membranes of neuronal somata, dendrites, other neurites (including axons and uncharacterized dendrites) and nerve terminal profiles, in the approximate ratios 95:85:52:45. Of the inhibitable binding over neuronal membranes in the ganglion little more than 3% was found to be synaptically located, and this involved para- or peri-synaptic regions of nerve terminal contacts rather than the specialized synaptic zone. About 5% of the inhibitable binding over neuronal membranes involved non-synaptic surfaces of nerve terminals and preterminal axon segments; almost 70% was distributed over non-synaptic surfaces of neuronal somata and dendrites, and about 21% upon other neurites. Binding sites were found not to be more highly concentrated at or adjacent to synapses than over other regions of neuronal surface membranes. About 50%, possibly more, of the binding on non-synaptic surfaces of nerve endings, and about 7% of binding upon dendritic membranes, was of non-M1, possibly M2 type, inhibitable by atropine but not by pirenzepine. Non-synaptic neuro-neuronal appositions, which involve dendrites and somata and often lie adjacent to synapses, showed rather more than twice the binding expected for each membrane individually; and neuronal membrane exposed to basal lamina lining ganglionic tissue spaces showed high levels of binding. Little inhibitable binding was seen over membranes of satellite and Schwann cells, or over cytoplasmic territories or ganglionic interstitial tissue. A model was constructed of the distribution of label, which showed that the observed results for total binding could be approximately matched by assuming the following relative densities of ligand binding sites: interstitial tissue space and supporting cells 1, soma cytoplasm 3, cytoplasm of dendrites, neurites and nerve terminals 4.5, surfaces of mesodermal elements 15, surfaces of neurites and nerve endings including sites of synapse 45, surfaces of dendrites 90, surfaces of neuronal somata 120, non-synaptic neuro-neuronal appositions 180. It is concluded that functional muscarinic receptors in this sympathetic ganglion, predominantly of the M1 type linked with slow depolarizations, but including some non-M1 receptors, are widely distributed over non-synaptic surfaces of the neuronal somata and dendrites and are not concentrated at synapses. Presynaptic autoreceptors are also present, of which half or more are of non-M1, possibly M2, type which might be inhibitory. The presence of M4 receptors is not excluded...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.