Abstract

The autoproducts are nonlinear mathematical constructs developed from acoustic fields with non-zero bandwidth. When averaged through the field's bandwidth, the autoproducts may mimic a genuine acoustic field at frequencies that are lower or higher than the original field's bandwidth. The resulting opportunity to extend signal processing to user-selectable below- or above-band frequencies is intriguing for many signal processing algorithms. Based on prior work, the limitations of the autoproducts' mimicry of out-of-band fields are understood when the in-band acoustic field is well-represented by ray acoustics. Thus, the focus in this study is on autoproducts in acoustic shadow zones behind barriers containing only diffracted acoustic fields where a sum of ray-path contributions is not an adequate field description. Diffraction is expected to be a detriment to autoproduct techniques due to its sensitivity to frequency. Two ideal shadow-zone environments with exact analytic Helmholtz-equation solutions are considered: Sommerfeld's half-plane problem, also known as knife-edge diffraction, and Mie scattering from a sphere with ka = 40, where k is the wavenumber and a is the sphere's radius. With the exception of the shadow regions, autoproducts experience only mild degradation in field-mimicry performance when compared to what the ray-based theory would predict.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.