Abstract

The manus and pes were studied using whole-mount and histological preparations of ontogenetic series of Chelonia mydas and Caretta caretta. Patterns of connectivity and sequences of chondrification events are similar to those reported for other turtle species, with respect to both the primary axis and the digital arch. There is no evidence of anterior condensations in the region distal to the radius and the tibia, supporting the hypothesis that the radiale and tibiale are absent in turtles. The three middle metacarpals are the first elements to start ossification in the manus of C. mydas, while ossification has not started in the pes. In the hatchling of C. mydas, most carpals have started ossification, whereas tarsals are mostly still cartilaginous. In C. caretta, the first carpals to ossify are the ulnare and intermedium, followed by the pisiform. Among metatarsals, the fifth hooked metatarsal is the last one to start ossification. The fibulare and intermedium fuse early in chondrogenesis, later becoming the astragalocalcaneum. Ossification in the carpals of C. caretta starts while tarsals are still cartilaginous. The derived autopodial proportions in each autopodium of adults are laid out at the condensation stage, and features that were present in basal turtles are absent at all stages examined (developmental penetrance). In contrast to this, conservatism is expressed in the presence of similar patterns of connectivity during early chondrogenesis, and in the development of overall proportions of the manus versus pes. As in adult anatomy, the development of the autopodium of marine turtles is a mosaic of derived and plesiomorphic features.

Highlights

  • Turtles have diversified from a likely terrestrial origin (Joyce and Gauthier, 2003) and occupy a variety of freshwater and marine environments

  • An enlarged pisiform helps to support the ulnar border of the blade which, to a large extent, moves as a unit

  • Embryological specimens of Chelonia mydas were obtained from the Hubrecht collection

Read more

Summary

Introduction

Turtles have diversified from a likely terrestrial origin (Joyce and Gauthier, 2003) and occupy a variety of freshwater and marine environments. Sea turtles exhibit some of the most derived morphological and physiological features in the group. The anterior feet are paddles or flippers, with little individual finger movement, since digits are joined by a web (retention of embryonic interdigital membrane), and the skeleton of the forearm is shortened. The digits, especially the middle three, are greatly elongated. This is accomplished not by hyperphalangy, but instead via an elongation of the metacarpals and phalanges (Richardson and Chipman, 2003). The articular surfaces of the phalanges are flat and without round condyles, and the

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call