Abstract
Classical diffusiophoresis describes the motion of particles in an electrolyte or non-electrolyte solution with an imposed concentration gradient. We investigate the autophoresis of two particles in an electrolyte solution where the concentration gradient is produced by either adsorption or desorption of ions at the particle surfaces. We find that when the sorption fluxes are large, the ion concentration near the particle surfaces, and consequently the Debye length, is strongly modified, resulting in a nonlinear dependence of the phoretic speed on the sorption flux. In particular, we show that the phoretic velocity saturates at a finite value for large desorption fluxes, but depends superlinearly on the flux for adsorption fluxes, where both conclusions are in contrast with previous results that predict a linear relationship between autophoretic velocity and sorption flux. Our theory can also be applied to precipitation/dissolution and other surface chemical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.