Abstract

Autophagy is primarily an adaptive response to provide nutrients and energy following exposure to stress and starvation but can also regulate muscle mass and impact infectious disease susceptibility. Expression of 10 autophagy-related (Atg) genes in rainbow trout was monitored throughout the autophagosome formation cycle. The Atg gene sequences of rainbow trout were compared to other species to identify highly conserved regions and to generate primers. Phylogeny trees created with rainbow trout and 14 other species demonstrate that rainbow trout Atg gene sequences have greatest similarity to Atlantic salmon and other fish species. RTgill-W1 cells were subjected to nutrient restriction and compared to cells in normal nutrient conditions using quantitative reverse transcriptase polymerase chain reaction to assess changes in Atg gene expression. Nutrient restriction had a direct impact on Atg gene expression, with atg4, atg9, atg12, lc3, gabarap and becn1 undergoing the greatest differential expression (p<0.05), most dramatically on Day 3. This was corroborated by Western blot detection of LC3, which also showed a peak of autophagy activity at Day 3 post-nutrient restriction. Atg gene expression revealed autophagy flux in RTgill-W1, as well as, those genes that were most significantly altered by nutrient restriction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.