Abstract

Autophagy is a conserved degradation system in eukaryotic cells that includes non-selective and selective processes. Selective autophagy functions as a selective degradation mechanism for specific substrates in which autophagy-related protein 11 (ATG11) acts as an essential scaffold protein. In B. bassiana, there is a unique ATG11 family protein, which is designated as BbATG11. Disruption of BbATG11 resulted in significantly reduced conidial germination under starvation stress. The mutant ΔBbATG11 displayed enhanced sensitivity to oxidative stress and impaired asexual reproduction. The conidial yield was reduced by approximately 75%, and this defective phenotype could be repressed by increasing exogenous nutrients. The virulence of the ΔBbATG11 mutant strain was significantly impaired as indicated in topical and intra-hemocoel injection bioassays, with a greater reduction in topical infection. Notably, BbATG11 was involved in pexophagy and mitophagy, but these two autophagic processes appeared in different fungal physiological aspects. Both pexophagy and mitophagy were associated with nutrient shift, starvation stress and growth in the host hemocoel, but only pexophagy appeared in both oxidation-stressed cells and aerial mycelia. This study highlights that BbATG11 mediates pexophagy and mitophagy in B. bassiana and links selective autophagy to the fungal stress response, conidiation and virulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.