Abstract

Vascular endothelial cell function responds to steady laminar shear stress; however, the underlying mechanisms are not fully elucidated. In the present study, we examined the effect of steady laminar shear stress on vascular endothelial cell autophagy and endothelial cell nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression using an ex vivo perfusion system. Human vascular endothelial cells and common arteries of New Zealand rabbits were pretreated with or without rapamycin or 3-MA for 30 min. These were then placed in an ex vivo cell perfusion system or an ex vivo organ perfusion system under static conditions (0 dynes/cm2) or steady laminar shear stress (5 or 15 dynes/cm2) for 1 h. In both ex vivo perfusion vascular endothelial cells and vascular vessel segment, steady laminar shear stress promoted autophagy and eNOS expression and inhibited ET-1 expression. Compared with steady laminar shear stress treatment alone, the pretreatment of autophagy inducer rapamycin obviously strengthened the expression of eNOS and decreased the expression of ET-1 in both the 5 and 15 dynes/cm2 treatment groups. Moreover, when pretreated with the autophagy inhibitor 3-MA, the eNOS expression was obviously inhibited and the ET-1 expression was reversed. These findings demonstrate that autophagy is upregulated under steady laminar shear stress, improving endothelial cell maintenance of vascular tone function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.