Abstract

Angiogenesis is critical for wound healing and tissue repair. Umbilical cord mesenchymal stem cells (UCMSCs)-conditioned medium has certain actions to promote angiogenesis, and is expected for wound healing and tissue repair. However, recent studies showed that the pro-angiogenic efficacy of unprocessed MSCs-conditioned medium is low, and insufficient for tissue repair. Autophagy is a process for protein recycling and a contributor for cell exocrine, which may enhance pro-angiogenic efficacy of the conditioned medium by stimulating cytokine release from UCMSCs. Therefore, in this study we attempted to obtain enhanced autophagy in UCMSCs using different concentrations of rapamycin and compared pro-angiogenic functions of the conditioned media. The in vitro data showed that although 100 nM-10 μM rapamycin all could induce autophagy in UCMSCs, 100 nM was the best dose to optimize the angiogenic effect of the conditioned medium. The in vivo data also showed that pro-angiogenic effect of the optimized conditioned medium was more obvious than that of the control conditioned medium (0 nM group) in the injected matrigel plaques. Further, the expressions of VEGF, FGF-2, MMP-9, PDGF-α and PDGF-β were markedly increased in UCMSCs treated with 100 nM rapamycin. In conclusion, appropriately enhancing autophagy of UCMSC can improve pro-angiogenic efficacy of the conditioned medium, which may optimize therapeutic applications of UCMSCs-conditioned medium in wound healing and tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.