Abstract
Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is a progressive, inherited neurodegenerative disorder that presents as polydipsia and polyuria as a consequence of a loss of secretion of the antidiuretic hormone vasopressin (VP) from posterior pituitary nerve terminals. VP gene mutations cause adFNDI. Rats expressing an adFNDI VP transgene (Cys67stop) show a neuronal pathology characterized by autophagic structures in the cell body. adFNDI has thus been added to the list of protein aggregation diseases, along with Alzheimer's, Parkinson's and Huntington's, which are associated with autophagy, a bulk process that delivers regions of cytosol to lysosomes for degradation. However, the role of autophagy in these diseases is unclear. To address the relationships between mutant protein accumulation, autophagy, cell survival, and cell death, we have developed a novel and tractable in vitro system. We have constructed adenoviral vectors (Ads) that express structural genes encoding either the Cys67stop mutant protein (Ad-VCAT-Cys67stop) or an epitope-tagged wild-type VP precursor (Ad-VCAT). After infection of mouse neuroblastoma Neuro2a cells, Ad-VCAT encoded material enters neurite processes and accumulates in terminals, while the Cys67stop protein is confined to enlarged vesicles in the cell body. Similar to the intracellular derangements seen in the Cys67stop rats, these structures are of ER origin, and colocalize with markers of autophagy. Neither Ad-VCAT-Cys67stop nor Ad-VCAT expression affected cell viability. However, inhibition of autophagy or lysosomal protein degradation, while having no effect on Ad-VCAT-expressing cells, significantly increased apoptotic cell death following Ad-VCAT-Cys67stop expression. These data suggest that activation of autophagy by the stress of the expression of an adFNDI mutant protein is a prosurvival mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.