Abstract

Individuals suffering from autoimmune disorders possess a hyperactive cellular phenotype where tolerance to self-antigens is lost. Autophagy has been implicated in both the induction and prevention of autoimmunity, and modulators of this cellular recycling process hold high potential for the treatment of autoimmune diseases. In this study, we determine the effects of a loss of autophagy in dendritic cells (DCs), as well as both B cells and DCs, in a TLR7-mediated model of autoimmunity, similar to systemic lupus erythematosus, where both cell types are critical for disease. Although a loss of DC autophagy slowed disease, the combined loss of autophagy in both cell types resulted in a lethal sepsis-like environment, which included tissue inflammation and hyperproduction of inflammasome-associated cytokines. Ablation of B cell signaling reversed this phenotype, indicating that activation of these cells is an essential step in disease induction. Thus, autophagy plays a dichotomous role in this model of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.