Abstract

Autophagy plays important roles in adipogenesis and neuron development. However, how autophagy contributes to cardiac development is not well understood. The main aim of our study was to determine the association between autophagy and myocardial differentiation and its roles in this process. Using a well-established in vitro cardiomyocyte differentiation system, P19CL6 cells, we found that autophagy occurred from the early stage of cardiac differentiation. Blocking autophagy by knocking-down of autophagy-related gene Atg7 or Atg5 inhibited the cardiac differentiation of P19CL6 cells. Further investigation demonstrated that LC3 and P62 could form a complex with β-catenin and NICD, respectively, and promoted the degradation of β-catenin and NICD. Enhancing autophagy promoted the formation of complex, whereas blocking autophagy attenuated the degradation of β-catenin and NICD. Taken together, autophagy could facilitate P19CL6 cells to complete the cardiac differentiation process through blocking Wnt and Notch signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.