Abstract

Alcoholic liver disease (ALD), a spectrum of liver abnormalities induced by chronic alcohol abuse, continues to be the major cause of life-threatening liver disease in developed countries. Autophagy and exosomes were individually confirmed to be involved in the pathogenesis of ALD. Here, we sought to identify the role of autophagy and exosomes in the liver protective effects of quercetin. We observed decreased hepatic LC3II/LC3I and increased p62 level in ethanol-fed mice, and these changes were alleviated by quercetin. Meanwhile, nanoparticle tracking analysis (NTA) showed elevated serum exosomes numbers in ethanol-fed mice, which was combated by quercetin. Ethanol induced elevated LDH, ALT, and AST in HepG2 supernatant, which was alleviated by cytochalasin D (exosomes uptake inhibitor). Moreover, quercetin reduced ethanol-induced LDH and ALT elevation in vitro, and the effects of quercetin were reversed by Rab27a overexpression (induce exosomes release) or wortmannin treatment (autophagy inhibitor). Transcriptomic analysis supported that quercetin reversed the change of lysosome related genes disturbed by ethanol. Meanwhile, western blot analysis exhibited decreased hepatic expression of LAMP2 and ATPA6V1B2, and active Cathepsin B/Cathepsin B by quercetin treatment, indicating quercetin alleviated lysosome dysfunction in ethanol-fed mice. Baf A treatment or transfection of siTFEB offset quercetin's effects in ethanol-induced LDH and ALT elevation, exosomes release, and autophagy inhibition (LC3II/I and p62 accumulation). Taken together, quercetin coordinately activates autophagy and combats exosomes release by restoring lysosome function, and further mitigates ethanol-induced liver damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call