Abstract

Evidence from human postmortem material, transgenic mice, and cellular/animal models of PD link alpha-synuclein accumulation to alterations in the autophagy lysosomal pathway. Conversely, alpha-synuclein mutations related to PD pathogenesis, as well as post-translational modifications of the wild-type protein, result in the generation of aberrant species that may impair further the function of the autophagy lysosomal pathway, thus generating a vicious cycle leading to neuronal death. Moreover, PD-linked mutations in lysosomal-related genes, such as glucocerebrosidase, have been also shown to contribute to alpha-synuclein accumulation and related toxicity, indicating that lysosomal dysfunction may, in part, account for the neurodegeneration observed in synucleinopathies. In the current review, we summarize findings related to the inter-relationship between alpha-synuclein and lysosomal proteolytic pathways, focusing especially on recent experimental strategies based on the manipulation of the autophagy lysosomal pathway to counteract alpha-synuclein-mediated neurotoxicity in vivo. Pinpointing the factors that regulate alpha-synuclein association to the lysosome may represent potential targets for therapeutic interventions in PD and related synucleinopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call