Abstract
The role of autophagy in the transplantation of induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) to treat spinal cord injury (SCI) and neurogenic bladder was investigated in this study. NSCs derived from human iPSCs were identified by and immunofluorescence assay. To clarify the role of autophagy, iPSCs were treated with either an autophagy inducer (rapamycin), or an autophagy inhibitor (chloroquine). Cell Counting kit-8 (CCK-8), western blot and flow cytometry were used to detect the effect of autophagy on the viability and differentiation of iPSCs. Sixty Wistar rats were selected to establish the SCI model and treated with iPSCs-derived NSCs transplantation. The effect of autophagy on the bladder function of rats with different treatments was evaluated by Basso, Beattie, and Bresnahan (BBB) score, bladder function score, bladder weight measurement, Hematoxylin & Eosin (H&E) staining, and Masson staining. The results of in vitro experiment showed that rapamycin enhanced the cell activity of iPSCs, increased the number of nestin positive cells, up-regulated Beclin-1 and LC3BI/II expressions, and down-regulated p62 expression. And the results of in vivo experiment showed that rapamycin improved exercise ability and bladder function, partially restored bladder weight, and significantly reduced bladder tissue damage in SCI rats. However, chloroquine showed the opposite results. The differentiation of iPSCs into NSCs could be promoted by induced autophagy, while neurogenic bladder of SCI was restored by autophagy activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.