Abstract

Hypoxic-ischemic brain injury (HIBI) in neonates can lead to lifelong cognitive and memory impairment, but protective strategies are lacking at present. It has been demonstrated that autophagy plays a critical role in HIBI, while the function of autophagy in cognitive and memory impairment induced by HIBI in neonates has not been tested. In this study, we tested the impact of autophagy on the impairment of cognitive function and memory in HIBI neonatal rats by using a Morris water maze and investigated its possible mechanisms, which were established as HIBI model by ligating the left common carotid artery in neonatal rats, followed by 2-h hypoxia. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II increased in HI group 24h after HI in neonatal rats, while Sequestosome 1 (P62/SQSTM1), phosphorylated cAMP-response element-binding protein (p-CREB) decreased (compared with the sham group, p<0.05), which were shown in the same left hippocampus CA3 region by immunofluorescence analysis. Brain injury of neonatal rats was aggravated significantly at 7day after HI, coinciding with the results of Morris water maze. An autophagy inhibitor, 3-methyladenine (3-MA) pretreatment significantly attenuated the increase of LC3II and the loss of P62/SQSTM1 and p-CREB, ameliorated neuronal death, and improved the results of Morris water maze. Our results demonstrate that HIBI in neonatal rats induced excessive autophagy flux, which aggravated brain injury and induced cognitive and memory impairment during adolescence. Inhibition of autophagy reversed the results partly and improved the function of spatial learning and memory by attenuating the reduction of p-CREB. The use of autophagy modulators in the immature brain would create new opportunities for protective strategies clinically in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call