Abstract

The mammalian nuclear lamina proteins—prelamin A- and B-type lamins—are post-translationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxy-terminal CAAX (C, cysteine; a, aliphatic amino acid; X, any amino acid) motif. However, prelamin A processing into mature lamin A is a unique process because it results in the production of farnesylated and carboxymethylated peptides. In cells from patients with Hutchinson–Gilford progeria syndrome, the mutant prelamin A protein, progerin, cannot release its prenylated carboxyl-terminal moiety and therefore remains permanently associated with the nuclear envelope (NE), causing severe nuclear alterations and a dysmorphic morphology. To obtain a better understanding of the abnormal interaction and retention of progerin in the NE, we analyzed the spatiotemporal distribution of the EGFP fusion proteins with or without a nuclear localization signal (NLS) and a functional CAAX motif in HeLa cells transfected with a series of plasmids that encode the carboxy-terminal ends of progerin and prelamin A. The farnesylated carboxy-terminal fusion peptides bind to the NE and induce the formation of abnormally shaped nuclei. In contrast, the unfarnesylated counterparts exhibit a diffuse localization in the nucleoplasm, without obvious NE deformation. High levels of farnesylated prelamin A and progerin carboxy-terminal peptides induce nucleophagic degradation of the toxic protein, including several nuclear components and chromatin. However, SUN1, a constituent of the linker of nucleoskeleton and cytoskeleton (LINC) complex, is excluded from these autophagic NE protrusions. Thus, nucleophagy requires NE flexibility, as indicated by SUN1 delocalization from the elongated NE–autophagosome complex.

Highlights

  • The nuclear envelope (NE) is an extension of the endoplasmic reticulum (ER), and comprises the outer nuclear membrane (ONM) and the inner nuclear membrane (INM) [1]

  • We investigated the impact of the farnesylated carboxy-terminal ends of progerin and prelamin A on the nuclear envelope morphology and the localization of SUN1, emerin, lamin A/C

  • At least 15 inherited diseases called laminopathies are linked to LMNA mutations that cause the characteristic abnormal nuclear morphology [47,48]

Read more

Summary

Introduction

The nuclear envelope (NE) is an extension of the endoplasmic reticulum (ER), and comprises the outer nuclear membrane (ONM) and the inner nuclear membrane (INM) [1]. The ONM is enriched in ER components; the INM contains numerous distinctive membrane proteins, including the LEM-domain protein emerin and the KASH-domain protein, SUN1 [2]. The NE double membranes are separated by a perinuclear space (PNS) and only intermingle at the joint site at which nuclear pore complexes (NPCs) are located [3,4]. NPCs are bidirectional transporters, shuttling macromolecules between the cytoplasm and the nucleus and vice versa [4,5]. The nuclear lamina underlies the INM and was originally considered a mechanical support for the nucleus, but its function has further been extended to signal transduction through interactions with INM proteins and genome stability via chromatin binding [6]. Nuclear lamins are members of the intermediate filament protein (IFP) family [7]. Like cytoplasmic IFP proteins, A- and B-type lamins share a similar

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call