Abstract

CBA mouse macrophages control Leishmania major infection yet are permissive to Leishmania amazonensis. Few studies have been conducted to assess the role played by autophagy in Leishmania infection. Therefore, we assessed whether the autophagic response of infected macrophages may account for the differential behavior of these two parasite strains. After 24 h of infection, the LC3-II/Act ratio increased in both L. amazonensis- and L. major-infected macrophages compared to uninfected controls, but less than in chloroquine-treated cells. This suggests that L. amazonensis and L. major activate autophagy in infected macrophages, without altering the autophagic flux. Furthermore, L. major-infected cells exhibited higher percentages of DQ-BSA-labeled parasitophorous vacuoles (50%) than those infected by L. amazonensis (25%). However, L. major- and L. amazonensis-induced parasitophorous vacuoles accumulated LysoTracker similarly, indicating that the acidity in both compartment was equivalent. At as early as 30 min, endogenous LC3 was recruited to both L. amazonensis- and L. major-induced parasitophorous vacuoles, while after 24 h a greater percentage of LC3 positive vacuoles was observed in L. amazonensis-infected cells (42.36%) compared to those infected by L. major (18.10%). Noteworthy, principal component analysis (PCA) and an hierarchical cluster analysis completely discriminated L. major-infected macrophages from L. amazonensis-infected cells accordingly to infection intensity and autophagic features of parasite-induced vacuoles. Then, we evaluated whether the modulation of autophagy exerted an influence on parasite infection in macrophages. No significant changes were observed in both infection rate or parasite load in macrophages treated with the autophagic inhibitors wortmannin, chloroquine or VPS34-IN1, as well as with the autophagic inducers rapamycin or physiological starvation, in comparison to untreated control cells. Interestingly, both autophagic inducers enhanced intracellular L. amazonensis and L. major viability, while the pharmacological inhibition of autophagy exerted no effects on intracellular parasite viability. We also demonstrated that autophagy induction reduced NO production by L. amazonensis- and L. major-infected macrophages but not alters arginase activity. These findings provide evidence that although L. amazonensis-induced parasitophorous vacuoles recruit LC3 more markedly, L. amazonensis and L. major similarly activate the autophagic pathway in CBA macrophages. Interestingly, the exogenous induction of autophagy favors L. major intracellular viability to a greater extent than L. amazonensis related to a reduction in the levels of NO.

Highlights

  • Leishmaniasis, a disease caused by trypanosomatids of the genus Leishmania, represents an emerging disease that continues to present a major public health problem, especially due to elevated incidence in developing countries (Santos et al, 2008; Perinoto et al, 2010)

  • LC3-II/Act ratio was found to be higher in positive controls compared to control untreated macrophages: 2.1-fold in macrophages treated with rapamycin and 3.2-fold in cells incubated under nutritional stress conditions

  • The present study demonstrated that L. amazonensis and L. major both induce autophagy in CBA macrophages, yet L. amazonensis infection was shown to produce a higher percentage of parasiteinduced vacuoles decorated by endogenous LC3-II

Read more

Summary

Introduction

Leishmaniasis, a disease caused by trypanosomatids of the genus Leishmania, represents an emerging disease that continues to present a major public health problem, especially due to elevated incidence in developing countries (Santos et al, 2008; Perinoto et al, 2010). During the autophagic degradative process, cytosolic components become trapped into compartments called autophagosomes, which subsequently fuse with lysosomes to form autolysosomes in consecutively coordinated steps: initiation, nucleation, expansion, completion, docking and fusion, thereby resulting in intravacuolar cargo degradation. These events are dependent on the family of autophagy related genes (Atg) and proteins that play specific roles during each stage of the autophagic process (Suzuki and Ohsumi, 2007; Suzuki et al, 2010; Nazarko et al, 2011). LC3-II has been employed as a useful marker for studies investigating the dynamics of autophagic pathway activation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call