Abstract

Podocyte injury is an important factor in the pathogenesis of diabetic nephropathy. Podocytes are characterized by large numbers of mitochondria. However, mitochondrial dysfunction as it relates to kidney pathology remains poorly understood. The present study found that podocyte mitochondria in different animal models of diabetes mellitus became elongated with the development of albuminuria, suggesting a change in mitochondrial dynamics. We then treated cells with a combination of glucose, fatty acids, and angiotensin II (GFA) to mimic the diabetic milieu. Cultured podocytes exposed to GFA showed megamitochondria formation and decreased autophagosome degradation. We also found that GFA treatment decreased the binding of the autophagosome to the lysosome. Our results suggest that megamitochondria are common in podocytes during diabetic nephropathy and that insufficient autophagy flux may underlie this effect. These findings have expanded our understanding of the pathogenesis of diabetic nephropathy and identified a potential pharmacological target for treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.