7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1103/physrevx.14.021019
Copy DOIJournal: Physical Review X | Publication Date: Apr 26, 2024 |
Citations: 4 | License type: CC BY 4.0 |
Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. A large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error-correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here, we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump, and it reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. In addition, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active. Published by the American Physical Society 2024
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.