Abstract

In response to the need for developing coordinated schemes of autonomous vehicles (AVs) at an intersection. This paper presents a novel coordination method for intersection management in a connected vehicle environment. The road network is divided into three logical sections, namely, buffer area, core area and free driving area. In addition, a buffer-assignment mechanism is developed to cooperatively assign a specific crossing span for an individual AV and guide each AV to adjust its entry time and corresponding speed in the core area. A set-projection algorithm and a three-segment linear speed profile are employed to control the trajectories of the AVs in the buffer area. Furthermore, the assignment failure handling process and the crossing rule for human-driven vehicles are advanced to enhance the practicability and reliability of the buffer-assignment mechanism. The performance of the proposed method is evaluated by simulating various traffic conditions on an actual urban network. The simulation experiments and sensitivity analyses demonstrate that the proposed method can significantly reduce 24.2%-77.1% of travel delays, decrease almost 99% of number of stops and improve the sustainability of the traffic system by saving 22.1%-52% of fuel consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.