Abstract

We develop a system-level design for the provision of Ancillary Service (AS) for control of electric power grids by in-vehicle batteries, suitably applied to Electric Vehicles (EVs) operated in a sharing service. An architecture for cooperation between transportation and energy management systems is introduced that enables us to design an autonomous Vehicle-to-Grid (V2G) for the provision of multi-objective AS: primary frequency control in a transmission grid and voltage amplitude regulation in a distribution grid connected to EVs. The design is based on the ordinary differential equation model of distribution voltage, which has been recently introduced as a new physics-based model, and is utilized in this paper for assessing and regulating the impact of spatiotemporal charging/charging of a large population of EVs to a distribution grid. Effectiveness of the autonomous V2G design is evaluated with numerical simulations of realistic models for transmission and distribution grids with synthetic operation data on EVs in a sharing service. In addition, we present a hardware-in-the-loop test for evaluating its feasibility in a situation where inevitable latency is involved due to power, control, and communication equipments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.