Abstract
This paper proposes an optimal approach for state estimation based on the Takagi–Sugeno (TS) Kalman filter using measurement sensors and rough pose obtained from LIDAR scan end-points matching. To obtain stable and optimal TS Kalman gain for estimator design, a linear matrix inequality (LMI) is optimized which is constructed from Lyapunov stability criteria and dual linear quadratic regulator (LQR). The technique utilizes a Takagi–Sugeno (TS) representation of the system, which allows modeling the complex nonlinear dynamics in such a way that linearization is not required for the estimator or controller design. In addition, the TS fuzzy representation is exploited to obtain a real-time Kalman gain, avoiding the expensive optimization of LMIs at every step. The estimation schema is integrated with a nonlinear model-predictive control (NMPC) that is in charge of controlling the vehicle. For the demonstration, the approach is tested in the simulation, and for practical validity, a small-scale autonomous car is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.