Abstract
Self-driving features rely upon autonomous control of vehicle kinetics, and this manuscript compares several disparate approaches to control predominant kinetics. Classical control using feedback of state position and velocities, open-loop optimal control, real-time optimal control, double-integrator patching filters with and without gain-tuning, and control law inversion patching filters accompanying velocity control are assessed in Simulink, and their performances are compared. Optimal controls are found via Pontryagin’s method of optimization utilizing three necessary conditions: Hamiltonian minimization, adjoint equations, and terminal transversality of the endpoint Lagrangian. It is found that real-time optimal control and control-law patching filter with velocity control incorporating optimization are the two best methods overall as judged in Monte Carlo analysis by means and standard deviations of position and rate errors and cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.