Abstract

Driving assistance systems and even autonomous driving have and will have an important role in sustainable mobility systems. Traffic situations where participants’ cognitive levels are different will cause challenges in the long term. When a pedestrian crosses the road, an autonomous vehicle may need to navigate safely while maintaining its desired speed. Achieving this involves using a predictive model to anticipate pedestrian movements and a strategy for the vehicle to adjust its speed proactively. This research combined model-based predictive control (MPC) with a social-force model (SFM) to effectively control the autonomous vehicle’s longitudinal speed. A genetic algorithm (GA) was also integrated into the approach to address the optimisation problem. A comparison between the proposed approach (MPC-GA) and the conventional MPC technique proved the outperformance of MPC-GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.