Abstract
This paper proposes a vision-based bike trail following approach with obstacle avoidance using CNN (Convolutional Neural Network) for the UAV (Unmanned Aerial Vehicle). The UAV is controlled to follow a given trail while keeping its position near the center of the trail using the CNN. Also, to return to the original path when the UAV goes out of the path or the camera misses the trail due to disturbances such as wind, the control commands from the CNN are stored for a certain duration of time and used for recovering from such disturbances. To avoid obstacles during the trail navigation, the optical flow computed with another CNN is used to determine the safe maneuver. By combining these methods of i) trail following, ii) disturbance recovery, and iii) obstacle avoidance, the UAV deals with various situations encountered when traveling on the trail. The feasibility and performance of the proposed approach are verified through realistic simulations and flight experiments in real-world environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.